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Kinetics of Cu?* Separation by Flotation

Ligia Stoica,” Gabriela Carmen Oproiu,
Roxana Cosmeleata, and Magda Dinculescu

Department of Inorganic Chemistry, “Politechnica” University
Bucharest, Bucharest, Romania

ABSTRACT

Precipitate flotation is one of the most efficient and economic separation
methods that has been widely applied in the last few years for ion-
molecular and colloidal species, both representing pollutant and useful
substances.

The separation of Cui‘;r species from diluted aqueous systems is often
studied for environment protection and for the recovery of copper. A
systematical study of the whole process has to consider the dynamics of
the process in order to optimize it.

This paper represents a study concerning the kinetics of Cuﬁq+ ions
separation by precipitate flotation using alkylamine type (laurylamine)
and alkylammonium salt (lauryltrimethylammonium chloride) as cationic
collectors and alkylsulphate and alkylcarboxilic type(sodium laurylsul-
phate and sodium oleate) as anionic collectors. The experimental data

*Correspondence: Ligia Stoica, Department of Inorganic Chemistry, “Politechnica”
University Bucharest, Splaiul Independentei 313, Sector 6, Bucharest, Romania;
E-mail: 1.stoica@oxy.pub.ro.

613

DOI: 10.1081/SS-120016654 0149-6395 (Print); 1520-5754 (Online)
Copyright © 2003 by Marcel Dekker, Inc. www.dekker.com



10: 24 25 January 2011

Downl oaded At:

Mﬁlil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

614 Stoica et al.

have been used in order to verify the classical first order model and three
other first-order models, respectively, adjusted to the classical model. The
experimental data have been analyzed with the PEAKFIT program.

The results of the study sustain—by interpretation of the fitting
parameters (the correlation coefficient, r, and the curve fit standard error,
e)—a first-order kinetics for the separation process of Cu(Il) hydroxide
species by precipitate-flotation method.

Among the studied kinetic models, the classical first-order model and
the first-order reversible model is well fitting the experimental data, and
the fully mixed reactor model describes, with acceptable errors, the Cuia'
ions separation process by flotation.

Key Words: Copper; Separation; Recovery; Precipitate flotation;
Kinetic model.

INTRODUCTION

The impurities of metallic ion-type are dangerous pollutants that may
represent a real source of useful substances as well. For the improvement of
environmental quality and for simultaneous recovery of the useful compounds,
several separations—recovery methods have been developed in the last years
that are generally unconventional procedures based on interface mass transfer.
The group of separation methods, using adsorptive bubbles, which also
includes ion-molecular and colloidal-particle flotation (Dissolved Air
Flotation, DAF variant) represents an alternative to the classical methods.'"!

Ion and precipitate flotation was developed as a consequence of the
progresses registered in the ores-flotation field, where the separated particles
are of micrometer/millimeter size. The principles of macroparticles flotation
can be also applied in the flotation of the ion-molecular and colloidal species.

In the ores-flotation process, the separation is achieved by natural
hydrophobty of solid particles or by artificially created (adding small
quantities of collector) hydrophoby.

In ion-flotation process, the hydrophoby is achieved by a stoichiometric
reaction of hydrophilic species with a tensioactive agent (TSA) as collector.
The product formed by the collector—metallic ion (colligand) interaction,
named sublate, becomes surface-active and it is concentrated into the foam
through the mobile phase (gas bubbles).

In precipitate-flotation process, the aqueous hydrophilic ion species
become hydrophobic species by the precipitation with another reagent than the
tensioactive agent. The precipitate hydrophoby can be increased when it is
treated with a tensioactive agent in lower quantities than the stoichiometrical
ones.!!
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Kinetics of Cu®>* Separation by Flotation 615

Thus, the main condition for achieving the flotation process is the
hydrophoby of the species that are to be separated. Atlow pH values, in aqueous
systems, the metal cations are present as hydrophile aqueous complex
[M(OH,), ™" type. By increasing of pH, the [M(OH,), " species are involved
in a successive deprotonation reaction leading to polymeric-hydroxide species
and, finally, to the formation of hydroxide precipitate [M,(OH),(OH,)4]""™
type. This process is known as the olation and oxolation process.!

Aqueous solution
[M(OH2),]™

v

NaOH,, | [My(OH)y(OH,),]™

)

| Stirring, pH control |

'

Collector Collector-[M,(OH)y(OH,),]"™”
interaction

'

Stirring, pH control |

A

Pressurized water

Dissolved Air Flotation

A

Centrifugation

Mo |

Figure 1. Separation scheme of flotation processes (DAF).
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616 Stoica et al.

In Fig. 1, a schematical presentation of the flotation process, including the
processing of the separated foam, is given.

Flotation as a complex separation process depends on chemical factors
(pH, molar ratio collector:colligand CC:CI\,[“Jr and, M™" concentration) and
hydrodynamic and mass-transfer factors, too. The study of the acid-base
complex equilibrium, correlated with the species structure and with the
possibility of recovery of the metallic ions from the foam, allows the inclusion
of flotation within the group of purification methods.™!

Ion flotation and its variant, precipitate flotation, are considered
separation methods with wide application possibilities (Fig. 2), especially
for the small concentrations range of noxious components having high
ecological and economical performances. The theoretical approach of the
precipitate flotation process has to consider the dynamics of the process, and
therefore, the kinetic aspects.”’ However, there are many difficulties in
establishing the kinetic equations because the flotation is a complex process
determined by many factors, some of them depending on the component
nature and structure'® and others on the design characteristics of the separator
apparatus.!”!

Therefore, the complexity of the flotation process is determined by:

o the number of elementary microprocesses which are simultaneously
and successively developed in space and time, each of them with a
definite probability [adhesion, collision, and the bubble-particle
complex formation[f’]];

e the structural and dimensional diversity of organic or inorganic
compounds in real aqueous systems (ions, molecules, colloids,
precipitates, etc.);

e the special properties of interfaces, and physical-chemical and
hydrodynamic factors.

Theoretical equations of flotation kinetics presented in literature are
generally deduced for ore flotation® by analogy with chemical kinetics,
without taking into account the particularities of this process and the specific
interactions between hydrophobic particles and gas bubbles. The first paper
concerning the ores flotation kinetics was published by Garcia-Zuniga'®! who
noticed that the extraction efficiency is an exponential function of time.

An important contribution to the theoretical fundament of flotation
kinetics is that of Huber—Panu,“O] who studied the factors influencing the
process and proposed a general model equation that could be accommodated
with some peculiar cases already described in literature.
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Figure 2. Applications of ion-molecular flotation.
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618 Stoica et al.

Dowling, Klimpel, and Aplan!''! have experimentally tested 14 kinetic
models presented in literature in order to establish their validity. These models
correspond to first- or second-order kinetic with different adjustments for
a better fit for the experimental data. In the present paper, the following kinetic
models are verified.

The classical first-order model''®! describes the hydrophobic particles
flotation having a constant floatability [Eq. (1)]. For the case of a
monodisperse feed, where all particles have the same floatability, the
equation is expressed by:

R = R*[1 — exp*(—kt)] (1)

where R is the recovery at time t, R" is the ultimate recovery for an infinite
time, and k is the rate constant.

The first-order reversible model''?! describes the transfer of a component
from the liquid phase to the foam and the subsequent drainage of a portion of
this component from the foam. The mathematical form of this model is:

R =R*ky /(ky +k)[1 — exp*(—(ks +k-))] €3

where k is the rate constant of the transfer process of the component from the
solution to the foam and k_ is the rate constant of the transfer process of the
component from the foam to the solution.

The fully mixed reactor model"'? is a first-order kinetic model where
floatability has an exponential distribution; this feature adds flexibility over
the classical first-order model. The kinetic equation has the expression:

R =R*[1 — 1/(1 +t/k)] 3)

where R is the recovery at time t, R" is the ultimate recovery for an infinite
time, and k is the rate constant.

The fist-order model with zero-time adjustment!'?! has the first-order
kinetic equation according to the first presented model [Eq. (1)] modified by
including a zero-time factor:

R = R*[1 — exp(—k(t + t*))] “)

where t" is the time correction factor, introduced because of the difficulty in
physically assigning time zero.

In ore flotation, the most hydrophobic solids may have some air bubbles
attached, which makes them float faster than they normally would; this can
cause a positive time correction. Literature provides few experimental data
concerning the kinetics of precipitate flotation so that some study about this
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aspect is necessary in order to optimize the parameters and to increase the
separation efficiency.

The present paper continues a series of previous works referring
to Cu®*" ions separation with cationic tensioactive agents (laurylamine-LA,
Ci,Hy5-NH,, and lauryltrimethylammonium chloride—LTMACI, [CsH»s
N(CHj3)5]Cl) and anionic tensioactive agents (sodium laurylsulphate—NaL§,
C,,H,50S0O5Na, and oleic acid—HOL-NaOL, C,;gHz; O,Na). These works
are based on the correlation between metallic ions species structure in aqueous
systems and the metallic ions affinity for different atoms and electron-donor
groups, potential ligands, in their interaction with TSA and then offer a study
on:

¢ influencing factors, allowing to decide upon the optimum separation
parameters;

e verification of the established parameters on real aqueous systems
(wastewaters from copper plating or mines);

e TSA-Cu interaction with respect to the optimum separation
parameters in order to elucidate the separation mechanism.

The results obtained for the systems selected for the kinetic studies are
presented in Table 1. In Table 1, the structure of the species isolated at
optimum pH and different collector:colligand molar ratios is also presented.
Chemical elementary analysis, thermal analysis, IR and electronic reflection
spectrometry, RES, and electrical conductivity measurements were used to
investigate the structure of the isolated species.

In order to do a kinetic study of the flotation process, four Cu-TSA
systems are studied at optimum separation parameters and the applicability of
first kinetic model in precipitate flotation is investigated.

EXPERIMENTAL
Reagents

e CuS0,4.5 H,0 p.a., Merck (Germany) (stock “model,” solution of 2
g1~ ") in distilled water, has been used to prepare working solution
according to Cu®" concentration in real systems (100 mg1~ ).

e Cationic collectors: laurylamine (LA) Fluka (Hungary) p.a., 0.2%
solution and lauryl- trimethylammonium chloride LTMACI Fluka p.a,
0.2% solution.
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Table 1.

Preliminary data required for kinetical studies.
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10-1000

10-1000

10-1000

10-100

9.5

7

9

7

107!

99

99.2

98.3

99.6

99.2

98.1

0.75

0.93

1.27

0.30

0.57

1.41

Coordination type

Coordination type

Electrostatical type

Electrostatical type

Coordination type

Coordination type

Hydroxo and
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complex

Possible ion-pair
complex

Hydroxosulphate and
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CH;-(CH,);-CH
=CH-(CH,),COO
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CuSOyyq
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Kinetics of Cu®>* Separation by Flotation 621

e Anionic collectors: sodium laurylsulphate (NaLS) Fluka p.a., 0.2%
solution, and oleic acid (NaOL) Fluka p.a., 0.2% solution.
e NaOH p.a.,, 6M and 2 M solutions as precipitation reagent.

Apparatus

e Flotation equipment adapted for kinetic studies having thermostat
system and sampling possibility!"*! (Fig. 3).

e pH-meter ORION 290 A.

e Atomic absorption spectrophotometer PYE UNICAM SP 9.

18
6
7
19
T
n E; :
p—s :

ATt

Figure 3. Flotation equipment adapted for kinetic studies.
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Methods

Kinetic studies were carried out using CuSOy,q samples (100 mgl™!,
V =0.31). NaOH 6 M and 2 M, was used in order to obtain Cu(II) hydroxide
species at optimum pH separation values for each studied system. The samples
containing Cu(Il) hydroxide species were treated with collector reagent under
continuous stirring and then were introduced into the flotation cell where the
separation process by air bubbles was achieved. For air-bubbles generation,
pressurized water (p = 4-10° Nm ™2, Viample : Vwaer = 3 : 1) was used. Every
10 sec, 2 ml of the dispersion was sampled and the concentration of Cu®" was
determined. For determination of Cu®" as soluble species, the samples were
treated with 0.05 ml concentrated H,SO,. We made the volume correction
corresponding to:

o the dilution generated by the pressurized water used for separation;
e the reagents used for correction pH and precipitate solubilization;
e the diminution of the volume by each sampling.

The recovery R, is expressed as:
R=(1-C;/Cy)*100 (%)

The initial concentration of Cu2+, C,, and the concentration at the time t, C,,
expressed in mgl~ ', were determined by atomic absorption spectrophotome-
try.

Experimental data were analyzed using the PEAKFIT program, obtaining
the dependence CC§+ = f(t), expressed as R = f (t) for each of the four studied
models in the range 0 + 120 sec for 13 experimental points (it was considered
that after 120 sec the equilibrium status was attained) at constant temperature
(20°C). This program offers information about the fit quality and about the
manner in which experimental data verify the theoretical models. The
parameter that expresses the fit quality is the correlation coefficient, r, which
represents a measure of the correlation between the theoretical kinetic model
and the experimental data:

cov(x,y)
r =
£:*ey

0<|r <1 6)

1
CoV(E, y) = - Y (i = ¥ (i = y) (7)

where N is the number of points on the flotation curve, and X and y are
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the medium values of x and y. Standard errors are expressed as:

2
o = /Z(X[N X)
/ a2

g = Z(y’Ty) 8)

RESULTS AND DISCUSSION

The classical first-order model is the most representative model among
the models proposed for the ore-flotation kinetics and is appropriate for being
applied to the precipitate-flotation process.

The first-order reversible model, the fully mixed reactor model, and the
first-order model with zero-time adjustment were obtained from the classical
first-order model after some adjustments were made!'?! considering, the
dimensional homogeneity of the compounds, the distribution of the
floatability, the foam dispersation, and the characteristics of the flotation cell.

The Classical First-Order Model
For each system studied, it was obtained the dependence C.2t = f(1),

expressed as R = f(t) in the range 0 + 120 sec, was considered to be the time
corresponding to equilibrium status at the constant temperature (20°C). The

Table 2. Rate constant and statistical fitting parameters for the classical first-order
model.

Studied system  pH  Cc:iCp, 2" R* kis™! ex T e
Cu-LA 9.5 107! 0951 0.067 0.0041 0999 0.0288
Cu-LTMACI 7 1072 0950 0.059  0.004 0994 0.033
Cu-NaLS 9 107! 0977 0.281 0.0082 0.999 0.0046
Cu-NaOL 7 107! 0977 0.22 0.0024  0.999  0.0026

Cc : C2™—molar ratio collector:Cu > concentration, R*—the ultimate recovery,

k—the rate constant, e,—the standard errors for the kinetic rates, r—the correlation
coefficients, e—curve-fit standard error.
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theoretical kinetic Eq. (1) was verified at optimum parameters determined for
all the systems. The theoretical curves were compared with the experimental
ones, R = f(t), and the statistical fitting parameters were obtained. The results
obtained after analyzing experimental data are given in Table 2.

1 {
I o et I B —s . —F % § 1 |
09 v 09
08 / 08
07 / 07 7
08 / 08 /
£ 05 /L & 05 /
14 / 04 /_
03 / 03
02 / 02 /
01 0l
0 0
I % a0 T 100 1% 0 % i h 100 1%
t/s tfs
(a) (b)
125 126
1 /_. = : 1 //r ¥
07 0.7 {’
3 / 3
05 / 05
026 026
0 T 0
I % 50 kil 100 125 0 & il kil 100 1%
t)e ts
(c) (d)

Figure 4. Comparison of the theoretical predictions [solid lines—Eq. (1)] with the
experimental data (points) for the dependence R = f(t) (classical first-order model):
a) Cu-LA, pH =9.5, CC:CCﬁJr =10"'; b) Cu-LTMACL, pH =17, CC:CCE+ =107
¢) Cu-NaL$S, pH = 9, Cc:C2t = 107!; and d) Cu-NaOL, pH = 7, Cc:C2™ = 1071,
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Because the correlation coefficient values (r) are greater than 0.994,
we assumed that a good agreement of the theoretical curve and the
experimental one was obtained (see Fig. 4). The curve-fit standard errors
(e) are acceptable for all studied systems [0.0288 (LA), 0.033 (LTMACI),
0.0046 (NaLS), and 0.0023 (NaOL)] and the standard errors for the kinetic
rates (ey) suggest that this kinetic model could describe the Cu(Il)
hydroxide species separation. The model is well fitting the experimental
data, especially in the case of anionic collectors. The classical first-order
model refers to the global order of the kinetic process, considering the
elementary microprocesses components of the global process. Therefore, it
was necessary to verify other first-order kinetic models which represent
different variants of the classical first-order model, with adjustments, for a
better fit with the experimental data.

The First-Order Reversible Model

In order to apply this model to the precipitate-flotation process, the
dependence CC§+ =f(t) and R =1f(t) were studied for four Cu-TSA
systems. Experimental results were fit on the theoretical curves described
by Eq. (2) (Fig. 5). The correlation coefficient values are very close to 1,
0.994 <r<0.999, (Table 3); therefore, the experimental curve is
considerably closer to the theoretical one for all the studied systems.
The standard curve-fit errors are very small (0.0048 <e < 0.03),
indicating also a good correlation of the two curves (experimental and
theoretical).

The model is well fitting the experimental data, so we can assume that the
drainage reverse process of a portion of the component from the foam to the
liquid phase may also probably take place.

The Fully Mixed Reactor Model

Using Eq. (3) of the theoretical curve, the dependence CC§+ = f(t),
expressed as R = f(t), was studied. The statistical fitting parameters for all the
systems were determined from the correlation of the theoretical curves with
the experimental curves in the range 0 + 120 sec. The fitting data presented in
Table 4 revealed that this model permits the greatest values for the correlation
coefficients: 0.995 <r < 0.999.

The values of curve-fit standard errors are low [0.029 (LA), 0.00742
(LTMACI), 0.0035 (NaLS), and 0.0013 (NaOL)], indicating that

this model also describes the flotation kinetics of the insoluble species
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Figure 5. Comparison of the theoretical predictions [solid lines—Eq. (2)] with
the experimental data (points) for the dependence R = f(t): a) Cu-LA, pH =9.5,
CC:CCﬁ+ =10"1; b) Cu-LTMACI, pH = 7, CC:CC§Jr =107%; ¢) Cu-NaLS, pH =9,
Cc:iCeim=10""; and d) Cu-NaOL pH=7, Cc:C2™ = 107" (the first-order
reversible model).

of Cu®* (Fig. 6). The maximum ultimate recovery values for this model
are the highest in comparison to previous models (0.989 < R* < 0.999).
We can assume that the flotation cell could function like a fully mixed
reactor.
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Table 3. Rate constant and statistical fitting parameters for the first-order reversible model.

Studied system pH CC:CCIE+ R* ky/s™! Sy k_/s™! Cx— r e
Cu-LA 9.5 107! 0.946 0.07 0.0093 0.0037 0.0007 0.998 0.03
Cu-LTMACI 7 1072 0.945 0.06 0.01 0.0065 0.00016 0.994 0.035
Cu-NaLS 9 107! 0.988 0.278 — 0.0031 — 0.999 0.0048
Cu-NaOL 7 107! 0.996 0.215 — 0.004 — 0.999 0.0027

Cc:C2 —molar ratio collector: Cu " concentration, R* —the ultimate recovery, k ,—the rate constant of the transfer process of the
component from the solution to the foam, k_—the rate constant of the transfer process of the component from the foam to the solution,
ek, ex——the rate constants errors, r —the correlation coefficients, e—curve fit standard error.
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Table 4. Rate constant and statistical fitting parameters for the fully mixed reactor
model.

Studied system pH  Cc¢ :Ca' Rx* K/s™! e r e
Cu-LA 9.5 107! 0.999 5.38 0.72 0995  0.029
Cu-LTMACI 7 1072 0.999 8.175 2425 0997 0.0742
Cu-NaLS 9 107! 0.989 0.696 0.045 0999  0.0035
Cu-NaOL 7 107! 0.996 1.199 0.189 0999  0.0013

Cc:CEf—molar ratio collector:Cu ** concentration, R* —the ultimate recovery,

k—the rate constant, e,.—the standard errors for the kinetic rates, r—the correlation
coefficients, e—curve fit standard error.

The Fist-Order Model with Zero-Time Adjustment

By correlating the two curves as previously described, this model allows
the determination of the rate constant, the time correction factor, and the fitting
parameters. As can be observed from Table 5, the time correction factor has
very low values (5.5~107lO < t* < 0.00013), and therefore, it can be
neglected and the Eq. (4) is reduced to Eq. (1), [R* values are almost identical
with those from the Eq. (1)]. The first-order model with zero-time adjustment
then becomes the first order classical model (Table 5). In the precipitate
flotation process this adjustment is not necessary because the ionic species do
not have air bubbles attached, and the bubble-particle interaction is produced
after the creation of insoluble species.

The Temperature Influence on the Flotation Kinetics

In order to obtain further information about the separation kinetics, the
variation of Cu®" concentration with temperature for all the systems was
studied.""" Therefore, Cu?* solutions 100 mgl_1 were floated with cationic-
(LA, LTMACI) and anionic-(NaLS, NaOL) type collectors at different
temperatures (20°C, 30°C, 40°C, and 50°C) and the activation energy was
determined.

The low negative values of the activation energies obtained for all
studied systems suggest an anti-Ahrrenius behavior. Such behavior could be
expected from a complex process in which the adsorption, molecular
diffusion, and the bubble-particle complex diffusion to the foam are strongly
depending on the temperature. The separation efficiency (%R) decreases
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Figure 6. Comparison of the theoretical predictions [solid lines—Eq. (4)] with the
experimental data (points) for the dependence R = f (t): a) Cu-LA, pH=9.5, C¢:
Ce2t =107"; b) Cu-LTMACL, pH =7, Cc: Cc2t =107% ¢) Cu-NaLS, pH =9,
Cc:CF=107"; and d) Cu-NaOL pH =7, Cc:CE = 107" (the fully mixed
reactor model).
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Table 5. Rate constant and statistical fitting parameters for the fist-order model with zero-time adjustment.
Studied system pH CC:CZ R* k/s ! ek t#/s €px r e
Cu-LA 9.5 107! 0.954 0.065 0.004 5251071 0 0.999 0.03
Cu-LTMACI 7 1072 0.975 0.063 0.007 0 — 0.988 0.048
Cu-NaLS 9 107! 0.977 0.281 0.0087 0.00013 0.18 0.999 0.005
Cu-NaOL 7 107! 0.977 0.22 0.0026 43107° 0.13 0.999 0.0027
CC:C(z;g—molar ratio collector:Cu’* concentration, R* —the ultimate recovery, k—the rate constant, e,—the standard errors for the
kinetic rates, t* —is the time correction factor, e..—the standard errors for the time correction factor, r—the correlation coefficients,
e—curve fit standard error.
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with temperature increasing, probably involving an adsorption process as a
slower step or an reversible initial process, which confirms the previous
results.

CONCLUSIONS

This paper presents a study regarding the kinetics of Cu(Il) hydroxide
species separation using flotation (DAF) with cationic (LA, LTMACI) and
anionic (NaLS, NaOL) collectors. In order to compare the experimental data
obtained for CCL2|+ = f(t) with theoretical models, three first-order models,
adjusted respectively to the classical model, were studied.

The adjustment has to take into account the following considerations:

The concentration trend of the metal ion in the froth is associated to the
transfer tendency of some colligand in the pulp (the first-order
reversible model).

The flotation cell behavior could be one of a fully mixed reactor (the
fully mixed reactor model).

The zero-time adjustment (the first-order model with zero-time
adjustment).

Using the mathematical models described by characteristic kinetic
equations, it was proved that:

The first-order model with zero-time adjustment is identical with the
classical first-order model.

The classical first-order model and the first-order reversible model is
well fitting the experimental data.

The fully mixed reactor model describes with acceptable errors the Cu”*
separation process by flotation.

The results obtained permit us to assume that the Cu(II) hydroxide species
separation using precipitate flotation (DAF) with cationic (LA, LTMACI) and
anionic (NaLS, NaOL) collectors follows an overall first-order kinetic.

Theoretical equations of flotation kinetics proposed for ore flotation could
be applied with good results in precipitate flotation in the condition of
performing the experiments according to the presented methodology.
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Obtaining more points in the range 0—30sec would allow a more exact
interpretation of studied models.
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